

VESTA – VIRTUAL ENVIRONMENT FOR SPACE AND TERRESTRIAL

APPLICATIONS – AN OPEN SOURCE 3D GRAPHICS ENGINE

S. Weikert
 (1)

, C. Laurel
 (2)

(1)
Astos Solutions GmbH, Meitnerstr. 10, 70563 Stuttgart, Germany, Email: sven.weikert@astos.de

(2)
Periapsis Visual Software, 626 Randolph Place, Seattle, WA 98122, USA, Email:claurel@gmail.com

ABSTRACT

This paper presents the Virtual Environment for Space

and Terrestrial Applications, VESTA. VESTA is an

open-source graphical 3D engine for animation of space

scenarios, visualization of mission analysis results and

managerial presentations. VESTA has been designed to

offer a freely available graphics engine that can be

incorporated into any software package, no matter if it is

open-source or commercial closed-source software.

The paper presents the capabilities of VESTA, gives an

overview on its architectural design and explains the

licensing conditions of VESTA.

The paper concludes with a summary of the current

development status and the upcoming development

activities.

1 INTRODUCTION

Worldwide there are a numerous number of

astrodynamic tools for simulation, analysis and

optimization of space missions. Most of these tools are

in-house developments. Only a few tools are

commercially available (like ASTOS). All these tools

would gain from a real-time visualisation, either for

result presentation purpose or to get a better

understanding of the numerical results. A graphical

representation of the results could also serve as a

plausibility check. Most of these tools lack adequate

visualisation means. Especially in-house developments

concentrate on the algorithms, graphical result

processing is most-often not considered. In this case

third-party software like Matlab or STK is often used

for visualisation. Since licenses for these commercial

tools are quite expensive and pure visualisation cannot

max out these tools, this is not the best approach from

an economical point of view. However, an own

development of a realistic real-time 3D visualisation

software will most often exceed the budget of the

projects.

As alternative to commercial third-party software, free

tools like Celestia or Orbiter are sometimes used for

real-time visualisation. These tools are not designed for

commercial applications, there license conditions does

not allow to incorporate them into a commercial product

or it is not easy to link astrodynamic models to them,

mainly because these tools come with their own

astrodynamic algorithms and the code structure was not

designed to replace parts of these models.

So what was missing is a freely available visualisation

module that can be linked to own models, that can be

sold as part of a commercial product and that is open-

source so it can be adapted to special needs.

With VESTA such a module is available now. VESTA

comprises a programming interface that is compatible

with a variety of languages like C++, Java, Python and

many more. With VESTA space scenarios can be

presented in a lifelike manner, with an accurate

representation of celestial bodies, spacecrafts,

propulsion exhausts, shadows, lights and clouds.

In order to display analysis results the realistic picture

can be superimposed by a variety of visual aids. Vector

arrows can be used to show coordinate frames,

velocities, accelerations or forces. Markers for points

and areas can show ground stations and observation

zones. Antenna beams of any shape can be rendered and

will show the current antenna coverage on-ground.

Trajectory curves can give an impression of the mission

arc.

Uncertainty volumes can be used to show the estimated

error of the underlying propagation or analysis.

Alternative textures for celestial bodies may be used to

add additional information, e.g. a map of population

density in conjunction with a re-entry safety analysis.

An important capability of VESTA, and what makes it

so suitable for visualizing space environments is that it

can display objects at a huge range of scales. A VESTA

demonstration application shows a spacecraft just a few

meters in size orbiting the Earth, which – with a

diameter of over 12,000 km – is roughly one million

times the scale of the spacecraft. Camera motion

through this environment is completely seamless – there

is no abrupt transition from the spacecraft close-up view

to the 'whole Earth' view. It's difficult to make this

work, because graphics hardware uses single precision

(32-bit) floating point arithmetic for transformation

calculations, and typically just 24-bit precision for depth

buffers. Careful software techniques are required to

reduce the large double precision coordinates to single

precision (or lower) without producing rendering

artefacts. The VESTA library manages the coordinate

reduction so that the application doesn't have to. The

interface exposed to the application is simple and

flexible: spacecraft, planets, and cameras can be

positioned arbitrarily using double precision

coordinates, and VESTA will render everything

correctly. Trajectory plots are an especially troublesome

case. It is reasonable for the camera can be placed

within a meter of the plotted trajectory of a Mars-bound

spacecraft, even though the trajectory may span over

300 million kilometres. The size of the visible portion of

the trajectory will be less than 10
-11

 times the total

extent – well beyond the precision of the GPU's single

precision arithmetic. Yet VESTA will render even this

pathological case correctly.

2 REALISTIC VISUALISATION

A realistic presentation of the mission scenario in real-

time was the main requirement for the development of

VESTA (see example screenshot in Fig. 1).

Figure 1. AstroView example application of VESTA

Two different techniques are available to reach this

goal:

 Graphics card accelerated scanline rendering

 Ray tracing

The first is commonly used by game developers and

produces quite realistic scenarios. With OpenGL [2] and

DirectX two hardware-independent interfaces are

available to use the 3D rendering capabilities of modern

graphics cards.

Ray tracing is a technique for generating the image by

tracing the path of light through pixels in an image

plane and simulating the effects of its encounters with

virtual objects. This technique is capable of producing a

superior visual realism, usually higher than that of

typical scanline rendering methods, but at a greater

computational cost, so it cannot be used in real-time.

Since DirectX is only available on Windows platforms,

OpenGL has been selected as the graphics API.

However, VESTA has an internal abstraction layer on

top of the underlying graphics API in order to ease

porting to other graphics systems. The abstraction layer

is already used to support two different rendering modes

in VESTA: fixed-function and shader based. Fixed

function mode is required for VESTA to support older

GPUs without programmable shading. Certain effects

such as shadows, atmospheric scattering, and bump

mapping are unavailable on computers configured with

older graphics hardware. When using the shader based

render mode, all visual effects can be enabled.

2.1 Shadows

The calculation of shadows is not directly supported by

the OpenGL language and the rendering engine of the

graphics card even though OpenGL supports so-called

shadow maps.

The illumination of an object depends only on the angle

with respect to the light source and its colour settings.

Shadows due to objects that cover the light source will

not be considered unless they are otherwise calculated.

VESTA renders shadows using shadow maps with

percentage closer filtering (PCF). To generate the

shadow maps for some geometry, VESTA first draws

the objects from the point of view of the light source

and records the depth at each pixel. In the second pass,

the geometry is drawn normally except that at each

pixel, a test is performed to see if the corresponding

shadow map pixel is closer to the light source. If it is,

then the pixel being drawn is in shadow. With

percentage closer filtering, multiple shadow tests are

performed at slightly offset positions. The result is that

some pixels near the edges of shadows will have

intermediate lighting levels, i.e. they are located in the

penumbral region of the shadow. When there is more

than one light source, additional shadow maps may be

required; fortunately, the number of light sources

casting visible shadows is usually quite low, especially

in space environments.

Figure 2. Shadows rendered by VESTA

Only if an object is illuminated by the sun it will

become a secondary light source. These additional light

sources must be considered to obtain an adequate

rendering result.

2.2 Particle System

The particle system of VESTA allows the visualisation

of gases and fluids like exhausts (see Fig. 3). Realistic

rendering of these entities is a hard task that needs a lot

of computation time. This is caused by the fact that the

gaseous stream is represented by numerous particles,

whose motion needs to be calculated every frame.

Figure 3. VESTA particle system

VESTA provides different types of particle emitters:

point sources, circular sources and box sources.

Figure 4. Particle system with different settings

The following parameters allow an adaption of the

particle system to different applications like different

engine types and different environmental conditions:

 the nominal initial velocity vector

 the variation of the initial velocity vector

 the life-time of the particles

 a constant force applied to all particles

 an array of colours and opacities the particles

have from creation till end-of-live

 the initial and final size of each particle

Changing these parameters, the exhaust shown in Fig. 3

looks more like one produced by an electric propulsion

system (see Fig. 4). Also other dynamic processes of

completely different kind, e.g. water falling down a

waterfall can be visualised with this technique.

3 OVERLAID INFORMATION

Besides the realistic view on the mission it is required to

overlay the scenario with additional information.

VESTA provides a lot of these visual aids:

 Celestial grid (Fig. 5)

 Planes, e.g. for the ecliptic (Fig. 7)

 Coordinate frames (Fig. 5)

 Vectors, e.g. for velocities or forces (Fig. 5)

 Cones, e.g. for antenna lobes or a sensor’s field

of view (Fig. 6)

 Overlaid textures for planets, e.g. to show the

population density (Fig. 7)

 Markers for points of interest

 Uncertainty volumes

 Trajectories (Fig. 5)

 Icons and labels in the screen pane, e.g. to

display the current time (all screenshots)

Figure 5. Celestial grid, vectors and trajectories

Figure 6. Antenna lobe and coverage

Figure 7. Equatorial plane and overlaid textures

All of these visual aids may be adapted to the user’s

requirements, either by the existing class methods or by

creating a derived Geometry class.

4 ARCHITECTURE

VESTA has an object-oriented class hierarchy,

programmed in C++. VESTA depends on the some

external libraries: Glew is used as interface to OpenGL,

the Eigen library is used for vector transformations and

the lib3ds library for the import of 3ds model files.

All relevant classes of VESTA are derived from the

abstract parent class Object (see Fig. 8). To explain all

classes goes beyond the aim of this paper, why in the

following only the most interesting and relevant classes

are discussed.

Figure 8. VESTA class hierarchy

Each object in VESTA is represented by an instance of

the Body class (which is derived from the Entity class).

Each body has a Chronology that specifies the position

of the object and a Geometry that specifies its visual

representation. Body related visual aids may be added

by child class instances of Visualizer. Celestial bodies

may have an optional Atmosphere.

An Arc is one segment of a Chronology. Within an Arc,

a single Trajectory expresses translational motion

relative to the centre object and in the trajectory Frame.

Similarly, rotational motion is described by a

RotationModel object. The frame for rotational motion

is given by the Arc's bodyFrame, which can be distinct

from the trajectory frame. This class relationship is

illustrated in Fig. 9.

Figure 9. Classes that define an object in VESTA

Three types of trajectories are available (see Fig. 10).

FixedPointTrajectory describes a point that remains at a

fixed position within the reference frame. This could be

used for a launch pad within the Earth rotating frame.

Figure 10. Available trajectory classes

The KeplerianTrajectory is self-explaining; the user

specifies the Keplerian by providing periapsis radius,

eccentricity, inclination, RAAN, argument of periapsis

the epoch and the mean anomaly at epoch. Since no

mass is associated to the central body, also the mean

motion at epoch has to be provided.

The above mentioned classes may be derived to create

arbitrary trajectories. The third class CallbackTrajectory

may be used where the above mentioned classes cannot

be derived due to cross-language inheritance limitations.

It calls a user-defined call-back method, providing the

current time. Then the call-back method returns the

current position in the reference frame of the trajectory.

Figure 11. Hierarchy of geometry classes

The Geometry object is the visual representation of an

Entity in VESTA. This base class is abstract; several

derived classes define the visual scenario (see Fig. 11):

 ArrowGeometry is a Geometry object used for

visualizers with one or more arrows: body axes,

frame axes, direction arrows, etc.

 BillboardGeometry is a geometry type used for

drawing screen aligned, textured squares, for icons

and similar items.

 ConeGeometry is a Geometry object with a single

cone. The cone is intended to be used to show

instrument fields of view rather than physical

objects. Thus, no surface normals are generated

and material properties other than colour and

opacity may be set.

 LabelGeometry is a geometry type used for single-

line screen aligned text and/or icons.

 MeshGeometry is a Geometry object for triangle

meshes, typically loaded from a 3D model file.

 ParticleSystemGeoemtry is a Geometry object that

contains one or more particle emitters.

 TrajectoryGeometry is used for visualizing the

paths of bodies through space.

 WorldGeometry is used for rendering spherical (or

ellipsoidal) worlds. Optionally, a WorldGeometry

object may have a cloud layer, an atmosphere, a

ring system, and one or more map layers. Areas,

lines and points of interest may be added to the

surface, illustrating any kind of data.

The CelestialCoordinateGrid and StarCatalog classes

are responsible to paint the sky with grid and star

background. The Observer class specifies position, view

direction and field of view of the observer.

5 INTEGRATION OF VESTA INTO ASTOS

One of the main goals for the development of VESTA

was the improvement of the Aerospace Trajectory

Optimization and Simulation Software ASTOS. Up to

now ASTOS was able to display its results as reports,

diagrams and as two and three dimensional maps.

Animation capabilities were not available, but only

export filters to tools like Celestia, Orbiter or STK.

With the integration of VESTA, ASTOS will become

more independent from these tools. Furthermore it will

be possible to show results in a much more flexible way

than it was possible via export to third-party software.

One major issue for the engineer using tools like

VESTA is he task to create the 3D model of the satellite

or launcher. In later design phases the engineer might

have access to CATIA models, but probably not to a

textured 3D model, e.g. in 3ds format.

Therefore ASTOS will comprise a database of typical

launcher and satellite shapes that can be used and

adapted for early design phases. For detailed designs

and interface to CAD software like CATIA is planned.

A graphical editor let the user associate textures to these

CAD models. Typical surfaces like of solar panel arrays

or beta cloth will be available and can be extended by

user-defined surfaces.

6 LICENSE CONDITIONS

The goal behind the VESTA project was to create freely

available software that can be incorporated into any

commercial product. The project shall benefit from the

expertise of numerous potential voluntary developers

that might contribute to the project. The code tree shall

be made available through a repository.

To avoid different branches of the software, which

cannot be maintained anymore, the software shall be

available on a single website. To assure the quality of

the code it is required that every update is revised by a

team of administrators.

Existing license conditions like LGPL [3] and BSD

were investigated whether they fit the requirements or

not.

It was figured out that these license conditions were

designed to protect the open-source development

against commercial abuse of the code. Especially LGPL

is virulent: code that links to LGPL licensed code is

automatically LGPL licensed. Commercial closed-

source code can only be linked with LGPL code if the

LGPL code is compiled into a separated library in such

a way that the library may be replaced by the user.

This is often not wanted or not possible, e.g. the library

need to be modified and contains confidential interface

code or enhancements.

In consequence it was decided to create a new license

for VESTA that gives full flexibility on the definition of

license conditions. These license conditions are detailed

in the following as far they are worth to be mentioned

here. For the full license text see [1]. However, it has to

be stated that only the full license text matters legally.

The core of this license agreement is that Astos

Solutions grants to the licensee a royalty free,

worldwide right to use, copy, distribute VESTA and to

make derivative work of the software. On the other hand

the licensee grants the same rights to Astos Solutions

for the derivative work created by the licensee. The

licensee is only allowed to create derivative work if he

follows these rules:

1. He inserts a prominent notice in each changed

file stating how and when he changed that file

2. He sends a notice of modification to the email

address licensee@astos.de

3. He does at least one of the following:

a. He provides his modified source code to

Astos Solutions, so it can be added to the

repository.

b. He uses the modified package only within his

corporation or organization.

The distribution of VESTA and modified versions of

VESTA is only allowed if the licensee inserts a

copyright notice of Astos Solutions during installation

of his software. Modified source code of VESTA must

not be delivered to the user. Irrespective of whether the

licensee has modified the VESTA code or not, he has to

place a statement about where to get the VESTA source

code in the user manual of his software or an equivalent

place. This rule is contrary to the rules defined by the

GPL or LGPL license, where the licensee has to provide

the source code or at least a link to it. With this

regulation it shall be prevented that different branches

of VESTA are publically available. In consequence only

reviewed code modifications that were identified to be

useful and reliable will become public.

Comparable to LGPL, paragraph 6 of the Astos

Solutions Free Public License grants the licensee the

explicit right to include VESTA (as binary) into a

commercial product and to charge a fee for it. The

software package and its input and output will not fall

automatically under the Astos Solutions Free Public

License.

Besides the rules mentioned above, the license text

allows different individual arrangements between Astos

Solutions and the licensee.

7 FUTURE DEVELOPMENT

Currently VESTA has reached the end of its incubation

phase. Now a basic version with all required features

exist why it had been made available to public in the

past days. Anyhow, there is always room for

improvements. With future hardware developments also

new features of the graphics API will be available that

should be utilized. Maybe, ray tracing techniques could

be introduced, e.g. for accurate reflection modelling.

The effect of light-scattering in the atmosphere is not

yet realistic at dusk and dawn and will be improved.

Currently the particle system does not consider other

objects when calculating the motion of particles, i.e. the

particles are not deflected by other objects. In particular

this becomes visible when rendering an ignited rocket

on a launch pad. Future versions of VESTA will

consider the launch pad and the planet’s surface when

calculating the motion of particles.

8 REFERENCES

1. Astos Solutions GmbH (2010). Astos Solutions Free

Public License. Online at http://www.astos.de/

Astos_Solutions_Free_Public_License.html.

2. Rost, R. J. et al. (2009). OpenGL Shading Language,

Addison-Wesley Longman, 3
rd

 edition,

Amsterdam, The Netherlands.

3. Free Software Foundation, Inc. (2007). GNU Lesser

General Public License (LGPL). Online at

http://www.gnu.org/licenses/lgpl.html.

	Introduction
	REALISTIC VISUALISATION
	Shadows
	Particle System

	Overlaid Information
	Architecture
	Integration of VESTA into ASTOS
	License Conditions
	FUTURE DEVELOPMENT
	References

