

# Missions Involing Low-Thrust Optimization

3rd European Optimization in Space Engineering Workshop

Glasgow, September 17-18, 2015

#### Outline



Objectives for mission analysis

Brief low-thrust model description

Electric orbit-raising

Near-term future scenarios

Long-term future scenarios





# **Objectives for Mission Analysis**



Determination of initial mission specifications is governed by varying levels of sophistication

- Perturbations (Earth oblateness effects, perturbational bodies, ...)
- Radiation belt modelling, power degradation modelling

Varying propulsion and system configurations

- Propulsion components, thruster characteristics
- System driven restrictions, e.g. solar cells orientation, recharge cycle

Trade-off aspects

- Restrictions on orbit geometry, e.g. sub-synchronous transfers
- Changing objectives, e.g. power output, payload, fuel, trip time

**Mission constraints** 

- Power management
- Geometrical path constraints i.e. radius
- Visibility and navigational constraints
- Target orbit definition



# **Objectives for Mission Analysis**



Requirements for mission analysis optimization software

- Utilization of low-thrust transfers (continuous thrust)
- Calculate time or fuel optimal transfer trajectories
- Computation of optimal control history
- Allow quick modification/in-/exclusion of boundary and path constraints and cost components
- Time economic and reliable computation of transfer trajectories
- Robust with respect to changing dynamics
   Dravide entired requilts that can easily be care
- Provide optimal results that can easily be compared
- Relieve user from tuning of optimizer setting
- Post-processing analyses
- Mission analysis reports

#### Low-Thrust Software



#### Low-Thrust Tool for

- Orbit transfers
- Moon transfers
- Interplanetary transfers



#### Model

- Perturbations (oblateness, 3rd bodies, solar radiation pressure, atmospheric drag, ...)
- Environment (radiation, eclipses, ...)
  - Operational aspects (visibility, slew rates, GEO ring, ...)

#### **Low-Thrust Software**





### **Initial Guess Generation**



Initial guess generation is based on a straight forward simulation

- Automatic construction using standard control laws
- Generic control history is sufficient to allow steady optimization
- Enhanced performance with more sophisticated initial control histories
- Use of earlier trajectories of lower-level computations is possible
   Fully automatic creation without any user intervention

Benefits:

- No need to compute abstract adjoint variables
- No need to newly generate model equations (i.e. indirect/hybrid methods)
- Pure utilization of physical relations
- Preparation of optimization algorithm is not required (0 minutes)

#### ➔Don't waste time on the initial guess

# **Large Scale Optimal Control Problems**



Challenge

- 10,000s of optimizable parameters, typically up to 200,000
- 10,000s of constraints
- Constraints: boundary conditions, path constraints
- Cost terms: Mayer costs, Lagrange costs

→ Complex and challenging optimal control problems with huge number of optimizable parameters

#### Solution

 Transforming the optimal control problem into a discrete NLP using direct method with collocation

# **Electric Orbit-Raising**



10

#### Orbital Life Extension Vehicle

- Spiralling from a transfer orbit (GTO) to the geostationary orbit (GEO) using low-thrust solar electric propulsion
- Docking with client spacecraft (telecommunication satellite in GEO) and taking over attitude and orbit control



### **EOR Operational Aspects – Navigation**



The long duration of EOR increase the cost of the ground station link.

An alternative could be autonomous navigation via GNSS:

- First half of GTO-GEO transfer with only one GPS antenna (nadir)
- Black line indicates GPS constellation orbit
- Green: > 3 GPS signals
- Blue: 2-3 GPS signals
- Red: <2 GPS signals</li>

#### GPS alone is not enough!



| Near-Term Scenarios      |                                                               |                                                    |                                 | Long-Ter | m Scenario | S    |
|--------------------------|---------------------------------------------------------------|----------------------------------------------------|---------------------------------|----------|------------|------|
| Earth-<br>Moon<br>System | <ul> <li>Shipment o<br/>low Earth o<br/>lagrangian</li> </ul> | f large payloa<br>rbit to Earth-N<br>point and low | ids from<br>Aoon<br>Iunar orbit |          |            |      |
| Near<br>Earth<br>Objects | <ul> <li>Scientific m<br/>objects</li> </ul>                  | issions to nea                                     | ar-Earth                        |          |            |      |
| Mars                     | <ul> <li>Robotic Ma</li> </ul>                                | irs sample ret                                     | urn                             |          |            |      |
| Outer<br>Planets         |                                                               |                                                    |                                 |          |            |      |
|                          | 2015                                                          | 2020                                               | 2025                            | 2030     | 2035       | 2040 |
| $\langle \rangle$        |                                                               |                                                    |                                 |          |            | μ.   |

# **Asteroid Double Rendezvous**



- Spacecraft visiting two near-Earth asteroids
- Solar electric propulsion
- Thrust level depends on available power



#### **Asteroid Double Rendezvous**



- Modeling of whole mission in one problem under consideration of all mission constraints Stepwise refinement of the trajectory under consideration of
- Operational constraints (e.g. station visibility)
- Navigational constraints (e.g. target visibility)



/ 3rd European Optimisation in Space Engineering Workshop

### **Asteroid Double Rendezvous**



Left figure: angle Sun-2ndTarget-S/C (blue) and distance from S/C to 2nd target (black)

For angles > 90° imaging of the asteroid by cameras becomes difficult during approach



Right figure: angle between Sun and spacecraft as seen from Earth (blue line), angle between Sun and Earth as seen from spacecraft (black line) and the minimum angular separation for safe uplink/downlink (red line)

#### **Robotic Mars Sample Return**





#### **Robotic Mars Sample Return**



#### **Mission analysis**

- Specific impulse ranges from 2,500s to 5,000s
- Thrust ranges from 1.22N to 2.44N
- Time and fuel optimal transfers

#### Mission constraints

- Payload mass to be delivered to Mars is 3 metric tons
- Prevent landing on Mars during dust storm season
- Maximum duration of mission is 6 years

| Case    | Specific<br>Impulse | Thrust | Issues for Time Optimal Result                                                                          | Issues for Fuel Optimal Result                                                                                                        |  |  |  |
|---------|---------------------|--------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Case 1A | 2,500 s             | 1.22 N | <ul> <li>Negative mass margin</li> <li>Mission duration &gt; 6 years</li> </ul>                         | <ul> <li>Negative mass margin</li> <li>Arrival at Mars during dust<br/>storm season</li> <li>Mission duration &gt; 6 years</li> </ul> |  |  |  |
| Case 1B | 2,500 s             | 1.5 N  | <ul> <li>Negative mass margin</li> <li>Mission duration &gt; 6 years</li> </ul>                         | <ul> <li>Negative mass margin</li> <li>Mission duration &gt; 6 years</li> </ul>                                                       |  |  |  |
| Case 1C | 2,500 s             | 1.75 N | Negative mass margin                                                                                    | Negative mass margin                                                                                                                  |  |  |  |
| Case 1D | 2,500 s             | 2.0 N  | <ul> <li>Negative mass margin</li> </ul>                                                                | Negative mass margin                                                                                                                  |  |  |  |
| Case 1E | 2,500 s             | 2.44 N | <ul> <li>Negative mass margin</li> </ul>                                                                | Negative mass margin                                                                                                                  |  |  |  |
| Case 2A | 5,000 s             | 1.22 N | <ul> <li>Arrival at Mars during dust<br/>storm season</li> <li>Mission duration &gt; 6 years</li> </ul> | <ul> <li>Arrival at Mars during dust<br/>storm season</li> <li>Mission duration &gt; 6 years</li> </ul>                               |  |  |  |
| Case 2B | 5,000 s             | 1.5 N  | • Mission duration > 6 years                                                                            | <ul> <li>Arrival at Mars during dust<br/>storm season</li> <li>Mission duration &gt; 6 years</li> </ul>                               |  |  |  |
| Case 2C | 5,000 s             | 1.75 N | $\checkmark$                                                                                            | • Mission duration > 6 years                                                                                                          |  |  |  |
| Case 2D | 5,000 s             | 2.0 N  | ✓                                                                                                       | ✓                                                                                                                                     |  |  |  |
| Case 2E | 5,000 s             | 2.44 N | Negative mass margin                                                                                    | $\checkmark$                                                                                                                          |  |  |  |

## **Robotic Mars Sample Return**



Results of time/fuel optimal transfers

- One Ariane 5 launch
- Initial mass 10 metric tons in GTO
- Launch in August 2019
- Mars stay 642 d / 515 d
- Re-entry March / April 2025
- Duration 5.5 y / 5.7 y
- Fuel mass 3,027 kg / 2,678 kg
- Delta-v 22.7 km/s / 18.8 km/s

Ē





x-Position S/C in ICRF [10<sup>5</sup> km]

3rd European Optimisation in Space Engineering Workshop

x-Position S/C in ICRE [10<sup>5</sup> km



|                          | Near-Term Scenarios |                                                                                                          |                                                                                                                                                                                                                               | Long-Term Scenarios                                                                       |      |                                             |  |
|--------------------------|---------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------|---------------------------------------------|--|
| Earth-<br>Moon<br>System | •                   | Shipment of large payloads from<br>low Earth orbit to Earth-Moon<br>lagrangian point and low lunar orbit | <ul> <li>Assembly of large telescopes in Earth-<br/>Moon lagrangian point to be shipped to<br/>Sun-Earth lagrangian point</li> <li>Moon in-situ resource utilization for<br/>missions beyond the Earth-Moon system</li> </ul> |                                                                                           |      | n Earth-<br>hipped to<br>n for<br>on system |  |
| Near<br>Earth<br>Objects | •                   | Scientific missions to near-Earth<br>objects                                                             | •                                                                                                                                                                                                                             | <ul> <li>Near-Earth objects exploration,<br/>exploitation, and risk mitigation</li> </ul> |      |                                             |  |
| Mars                     | ۰                   | Robotic Mars sample return                                                                               | <ul> <li>Crewed missions to Mars, Deimos, and Phobos</li> </ul>                                                                                                                                                               |                                                                                           |      | mos, and                                    |  |
| Outer<br>Planets         |                     |                                                                                                          | <ul> <li>Scientific/robotic missions to the outer<br/>planets to search for evidence of life</li> </ul>                                                                                                                       |                                                                                           |      |                                             |  |
|                          | 20                  | 015 2020 2025                                                                                            |                                                                                                                                                                                                                               | 2030                                                                                      | 2035 | 2040                                        |  |
|                          |                     |                                                                                                          |                                                                                                                                                                                                                               |                                                                                           |      | 7                                           |  |

# **Asteroid Mining**



- Transport of mined material (e.g. hydrocarbons)
- Example target asteroid (1685) Toro
- Nuclear powered spacecraft with 200 kWe
- 4 payload masses (5, 10, 15, and 20 metric tons)



 Specific impulse from 2,000s to 10,000s representing four thruster technologies (MPDT, HET, single grid GIE, dual stage 3 grid DS3G)



3rd European Optimisation in Space Engineering Workshop

# **Asteroid Mining**

- Spacecraft assembled in lagrangian point
- Launch in 2030
- Stay time 1 year
- Minimum fuel transfers
- Mission delta-v is ~20 km/s
- Examples for Isp 2,500s (HET)
- Payload of 5 metric tons
   Mission duration 4.1 years
  - Fuel consumption ~18 metric tons
- Payload of 20 metric tons
  - Mission duration 4.3 years
  - Fuel consumption ~33 metric tons



Time [d]

0.8 U Lint [N] 0.0

Max

2.0

0.0 ⊾ 0.0

Time [d]



### **Jupiter Moons Sample Return**



- Sample return mission from one of the Jovian moons
- Spacecraft assembled in one of the lagrangian points
- NEP driven spacecraft (200 kW<sub>e</sub>)
- HET, GIE, and DS3G
- Payload of 2 metric tons
- Hohmann-like low-thrust transfers





### **Jupiter Moons Sample Return**



- Fuel optimal transfers
- Initial mass 15-51 metric tons
- Mission duration ~9-10 years
- Stay time 1-2 years
- Mission delta-v ~33 km/s
- Fuel mass ~9-36 metric tons





#### **Comet Sample Return**



Sample return mission from comet nucleus

- Solar electric propulsion (distance to Sun in aphelion!)
- Fuel optimal transfers
- Constrained comet arrival: during perihelion passage



#### Leadership requires solutions



# Thank you!